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Acceleration of Molecular Excitons by an Electric Field 
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The average location of a molecular exciton wave packet in a long, linear chain molecule in the presence 
of an electric field directed along the chain is investigated by perturbation theory. Neglecting end effects, 
and using the Born-Oppenheimer approximation, it is shown that the exciton behaves like an electric 
dipole—it acquires a constant acceleration along the chain, to first order, due to the gradient of the electric 
field. The exciton dipole moment is proportional to various atomic dipole moments induced by the applied 
electric field. It is also shown that the electric field results in long-range atomic coupling even if the coupling 
Hamiltonian is of the nearest neighbor type only. 

INTRODUCTION of the kit a tom, obeying 

BEGINNING with FrenkeFs and Peierls' original 
papers1-3 on molecular excitons, a considerable 

effort has been devoted to this area with the primary 
effect of determining stationary states, transition 
probabilities as well as coupling of excitons to phonons. 
These investigations, devoted to a study of "stationary" 
excitons in molecular crystals, are discussed in a recent 
work by Davydov,4 as well as in a review by McClure.5 

There exists also some experimental evidence6 that 
exciton wave packets may be formed, which transfer 
energy from one atomic site to a site many atomic 
distances (1000 A) away. Aspects of this problem of 
nonstationary excitons have been studied by a few 
investigators,7,8 but there are still many interesting 
unanswered questions. One of these questions, examined 
in this paper, concerns the effect of an external electric 
field on the motion of a free exciton wave packet (i.e., 
not coupled to phonons) in a long, linear chain molecule. 
In particular, we are interested in determining the 
acceleration (if any) of an exciton by an electric field. 
We choose the finite model in preference over an 
infinite (or semi-infinite) crystal because we wish to 
impose an electric field over the whole physical space. 
This field is to be treated as a small perturbation. 

THE EXCITON AMPLITUDE AND THE 
ACCELERATION MATRIX 

We review briefly here the manner whereby station
ary and time-dependent exciton amplitudes are con
structed. Consider a system of N identical atoms whose 
nuclei are assumed infinitely heavy; phonons are, 
therefore, neglected. Let Xa(k) represent the ath state 

1 J. I. Frenkel, Phys. Rev. 37, 17 (1931). 
2 J. I. Frenkel, Phys. Rev. 37, 1276 (1931). 
3 R. Peierls, Ann. Phys. 13, 905 (1932). 
4 A. S. Davydov, Theory of Molecular Excitons (McGraw-Hill 

Book Company, Inc., New York, 1962). 
6 D. S. McClure, in Solid State Physics edited by F. Seitz and 

D. Turnbull (Academic Press Inc., New York, 1959), Vol. 8. 
6 E. J. Bowen, J. Chem. Phys. 13, 306 (1945). 
7 R. E. Merrifield, J. Chem. Phys. 28, 647 (1955). 
8 J. L. Magee and K. Funabashi, J. Chem. Phys. 34, 1715 

(1961). 

H0(k)Xa(k) = eaXa(k); k=l, 2, • • -N. (1) 

Neglecting coupling between the atoms leads to 

HO<PQ=EQ(PO, (2) 

where 

H0=ZHo(k), Eo=Ne0y and * 0 = I I M ) . 
k=l k=l 

Equation (2) refers to the molecular ground state. For 
a situation in which the 7th atom is excited, but all 
others are in the ground state, we get an A^-fold de
generate set of wave functions <pi(j), which satisfy 

ffo*i(i) = £i*>i(i), (3) 

where9 

E1=(N-l)e0+e1 and <Pl(j) = X1(j) U' X0(k). 

One now adds a coupling term V to Ho, and we assume 
in particular that it couples nearest neighbors only; i.e., 

V= 7 (1 ,2 )+ F(2 ,3)+ ... + V(N-1,N). (4) 

We now seek the eigenfunctions of H^Ho+V; corre
sponding to the <pi(j), these are given to zeroth order by 

^k=JLmCkmfpl(m) (5) 

and obey the equation 

H*k=E&k; * = 1, 2, • • • # . (6) 

The vector Ckm^gmik), m = l , 2, • • -N is a represen
tation of a stationary exciton obeying the equation 

HmHimgmW = Ekgr^\ 
r = l , 2, . . . t f ; k=l, 2, ---N (7) 

9 Although the X's are assumed properly antisymmetrized with 
respect to electrons belonging to a given atom, electrons belonging 
to different atoms are not antisymmetrized in the <p's. Formation 
of the Slater determinant, as is done for example in Davydov 
(reference 4), leads to wave functions which are no longer exact 
eigenfunctions of #0. This problem will be examined in a later 
paper. 
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where Hrm is just (<pi(r),H(pi(m)). Equation (7) can be 
viewed as a Schrodinger equation for the exciton 
amplitude g^ defined over a space of N discrete points 
labeled by r. This is made reasonable by the fact that 
\grik)\2 is the probability of finding the excitation 
localized on atom r, if the molecule is in state k. 

One can find the corresponding time-dependent 
Schrodinger equation for an exciton wave packet fr(0> 

M(dtr/dt) = Y,mHrmU(t), (8) 

by starting with a molecular state \F(/) obeying the 
equation 

HV^MidV/dt) (9) 
and setting 

^(0 = Erfr(0^l(O-. (10) 

If, in particular, >F(0)= <pi(j), then (8) is supplemented 
by fr(0) = 5ry, and has the solution 

Ut) = llk *,*<»«/*> « ? [ ( - » / * ) & * ] (11) 

by virtue of the orthonormality of the gw ' s . From 
(10), | f r(t) |

2 is the probability of finding the excitation 
localized on the rth atom at time t if it was localized on 
the yth atom at /=0. 

Now specialize this theory to a linear chain molecule, 
consisting of N identical, equally spaced atoms; 
assuming nearest neighbor coupling, we write: 

H]ck=Ei-\-a, Hk,tc±i—@, (12) 

all other matrix elements being zero. It can be easily 
shown10 that 

/ 2 V 
gr<« = **<'> = ( 

W + l / 

2 X1'2 krir 
sin , 

N+U N+l (13) 

E*=Ei+a+2/3 cos[fer/(^+l)]. 

The average position of the exciton packet is obviously 
given by 

(*)=E*lr*(0l2 . (14) 

It follows from (8) and (14) that 

(a)=(v)= E f r * < 2 r m f , 

where 

(15) 

(16) 

(17) Yrm= (l/M)Hrm(r—m) 

and the acceleration matrix Qrm is 

Qrm=(l/mHnHrnHnm(2n—m-r). (18) 

10 J. L. Magee, in Comparative Effects of Radiation, edited by 
M. Burton, J. S. Kirby-Smith, and J. L. Magee (John Wiley & 
Sons, Inc., New York, 1960), p. 130. 

If one now uses (12) and (18) one finds that all Qrm are 
zero except Qn and QNN which are given by 

QII=-QNN=(2/W)$\ (19) 

These two terms clearly represent the effects of the 
molecular ends—acceleration due to reflection. This 
end effect disappears for an exciton wave packet which 
originates at /=0 on the central atom of the chain. 
By symmetry, (x) is a constant in this case. 

APPLICATION OF A LONGITUDINAL 
ELECTRIC FIELD 

Now consider the application of a stationary electric 
field parallel to the molecular chain, which dimension 
we shall call z and assume that the &th atomic nucleus 
is located at kR, R being the interatomic distance. 
Assume the potential can be represented by a power 
series in z: 

V=VG+\1z+\2z
2+' (20) 

Due to the presence of this potential, there are addi
tional terms in the Hamiltonian of the free atom, one 
such term per electron. Let z(k,j) represent the z 
coordinate (as measured with respect to the origin of 
the molecular coordinate system) of the yth electron 
belonging to the &th atom. We then get a potential 
energy term 

U(k,j)=-eVtz(kjn (21) 

This can be transformed to primed coordinates, defined 
relative to the kth nucleus: 

This leads to 
z(k,j) = kR+z'(k,j). (22) 

U(k,j)=-e{Vo+\£kR+z'(k,j)-] 
+\£kR+z'(k,j)J+---}. (23) 

If each atom has r electrons, we find that the new 
Hamiltonian is 

H0'(k) = H0(k)+i: U(k,j) 

= H0(k)+U(k). (24) 

The new Schrodinger equation becomes 

H0'(k)Xa'(k)=ea'(k)Xa'(k). (25) 

To first order in Xi, X2 we get 

ea'(k) = ea+(Xa(k),U(k)Xa(k)) (26) 

and 

(X,(k),U{k)Xa(k)) 
Xa'(k) = Xa(k)+ £ ' X„(k) (27) 

=xa(k)+xz'vtia(k)xft(k), (28) 
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where X stands for both Xi and X2, and, obviously 

{X»{k),U(k)Xa(k)) 
Mia (k) = ~. (29) 

We now use Eq. (28) to construct the various iV-
particle wave functions <p/, obeying the equation 

where 
Ho cpn —E^ <p,i, 

#<>'=£ Ho'(j). 
i-i 

(30) 

In particular, we are interested in the new ground-state 
function 

and the function 

^w=i/wnio'(i) 
J9*k 

(31) 

(32) 

representing a state with the &th atom alone being in 
the first excited state. 

I t is now of interest to calculate the energy levels 
Ei(k) corresponding to the various <pi(k). To do so, 
we use Eqs. (23) and (25). This calculation simplifies 
by virtue of (a) an assumed absence of a static atomic 
dipole moment, thus leading to ( I a , 2 / I a ) = 0; and 
(b) the identity of the N atoms so that (Xa(j)/

2Xa(j)) 
is independent of j . I t can then be easily shown that 

E1'(k) = E1+(N-l)e0-ej:{r(Vo+\ijR+\2J2R2) 
3=1 

+ (N- 1)X2 L(^2)oo+X2 Z ( ^ 2 ) n } , (33) 

where 

(Zs
2)oo= (Xo,s/2X0), <Z s

2)n= (X1)z/2X1). (34) 

Since Eq. (33) is independent of k, we can conclude 
that the <pi(k) form an Af-fold degenerate set of wave 
functions with energy Ei. 

At this point we again introduce the coupling po
tential V from Eq. (4) and proceed to construct exciton 
wave packets and operators on the basis of Eqs. (30) 
and (31). This new wave packet f / ( 0 is related to 
£r(t), to first order in X by 

f / ( 0 = fr(/) + ^ r ( / ) 

and obeys the equation 

/ . m tl rm J m ™* 

where 
dt 

HrJ=(<pi'(r), (Ho'+V)<Pl'(m)). 

(35) 

(36) 

(37) 

Similarly, the new acceleration matrix Qrm' is related 
to Qrm by 

Qrm =(?»•»»+X<7 (38) 

The average acceleration of the wave packet in the 
presence of the electric field is, of course, 

(a)'=j:rm{r*'(t)Qrm'U'(i). (39) 

We now use the fact, as shown in Eq. (19), that all 
elements of Qrm are zero except Qn and QNN. Since we 
wish to ignore the end effects and concentrate on the 
acceleration due to the electric field alone, we now 
assume that (a) The molecule is very large, iV^>l. 
(b) The excitation originates at the center, i.e., at 
(i\H-l)/2. 

I t follows then that for a sufficiently small time 
interval /, f i ( / )~0~£>( / ) • We can, therefore, neglect 
Qrm altogether, and the acceleration, to first order in 
X becomes 

(ay = \Y,rm f r*(t)qrm?m(t), (40) 

where fr(2) is just the zero-field exciton amplitude 
constructed out of the sin[&nr/(Af+l)] according to 
Eq. (11). To find (40) we use the fact that the matrix 
element Hrm' can be related to the zero field Hrm by 

ki-rm — • " rm*T~A/^j*m« (41) 

I t follows, by substituting (41) in (18) that, to first 
order in X 

Qrm— (\/h)Y,n(2n — M—r)[HrnHnm 

+ \(hrnHnm+Hrnhnm)1. ( 42 ) 

This means that qrm is shown to be 

qrm= (l/ft)X,n(2n—ni--r)(hrnHnm+hnmHrn), ( 43 ) 

where, of course, Hrn is given by Eq. (12). The use of 
this equation leads finally to 

qrm=i3/'h{(tn+2—r)(hr,m+i—hr-i,m) 
+ (fn-2-r)(hr,m-.1-hr+i,m)}. (44) 

The problem becomes now the determination of hrm. 
First of all, from Eq. (37). 

Hrm — €i 6rm\ V rm 

= (€i+\b)drm+Vrm9 

(45) 

where b can be read off from (33). 
We now evaluate Vrm to first power in X, using (28) 

in (32). I t can be readily shown that Vim
f consists of 

the following sum: 

F r m
/ = 7 m + X { £ bj,i(m)Wa(r,m) 

where 
+ri0i*(r)W,*(m,r)]+Lrm+Lrfn*}, (46) 

^ M ^ f e W , ^ W I I ' Xo(j)) (47) 
JT^m 
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and 
Lrm= HX<Pi(r)7VX1(m) JJ Vao(j)X(j)). (48) 

Since a is not zero in (48), Lrm vanishes for all r and m. 
As for Wa(r,m), the following statements hold: 

(1) When cr=0, Wo(r,m) is nonzero for all r and m 
because V couples the ground state of the molecule to 
every state in which any one atom is excited. The 
applied electric field generates, therefore, a kind of long-
range coupling between two states with widely separated 
excited loci by cat/sing transitions from one of these 
excited states to the ground state. Furthermore, Wo(r,m) 
is independent of r and m as long as r is neither 1 nor N. 
As stated before, we are not concerned with end effects, 
and, therefore, ignore this latter case. This enables us 
to set Vo(r,m) = vo for all r and m. 

(2) For a9^0, 1, W<r(r,m) is nonzero only for m=r, 
fzbl ; i.e., the nearest neighbor coupling comes into 
play again. The value of Wa(r,m) depends only on a 
and on \r—m\ ; hence, 

Wv (r,m) = a A m + ft, (5»,-+i+dmr-i). (49) 

We can now write Eq. (46) as follows: 

Vrm'= 7rm+A{77oi(w)w 0 +1701* W v 0 * 

<r^0,l 

+ Z; V^(r)La^drm+^(8mr+1+8mr-i)l}. (50) 
<r^0,l 

Equation (50) combined with (41) and (45) enables us 
now to express \hrm through the formula 

XA r m=X« r mJ+X[F(w)+F(f)*], (51) 
where 

\F(m) = \ E ' Vai(ni)Zaff8rm+i3a(5mr+i 

+ 8mr-l)] + iW70l(w). (52) 

We must now evaluate A??™, in particular (Xff,UXa). 
I t follows from Eq. (23) that, for a^ay 

(Xff(k),U(k)Xa(k))= -e(A 1+2^A 2 )Z ( r a -eA 2Z ( r a
2 , (53) 

where 
r r 

s = l s = l 

using the notation of (34). I t is now useful to define 
two new symbols A7™ and ava by 

ATcr«= — e(\1Zaa+\2Zaa
2) (ea— eff)~

l, 

u*a^ — 2eRZ<xa{ea— e,)-1. 

This enables one now to write in Eq. (52) 

XF(m)= £ ' (Al7 f f l+A 2 WC0(r l ) [« f f 5rm+iS f f (5 m r + i 

+5mr-i)]+MAi7oi+A2ma>oi). (5 6) 
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Let us now combine terms. Define 

Ax^b+ £ ' (a^7ffi+a,r*7<ri*), 

8 ^ 2 = £ ' (aaGM+a/Wi*), 
<r^0,l 

^ i = £ ' ( Y , I & + 7 , I * & * ) , 

^ O , I (57) 

^ 2 = X / <*<rlP<r, 

Ci=Wor-No*7oi*, 

C2=^oWoi. 

I t follows from (51), (56), and (57) that 

Xhrm= 8rm\XiA i+A28w^ 2] 

+ (drm+i+8rm-i)Z\iB1+\2mB2+\2rB2^ 
+XiC1+\2mC2+rC2*\2, (58) 

where Ah A2, Bh and d are real. 
We can now evaluate qrm by introducing (58) into 

(44). I t is immediately obvious that only the A2 terms 
survive. In particular: 

4/? 
\qrr=— A2(R(J52+C2), 

n 
(59) 

\qrr+i='\qr+ir=—\2Gi(A2+C2). 
h 

All other qrm= (8/3A2/^)(R(C2), where neither r nor m 
take on the values 1 or N. (R(y) means the real part of y. 

We now introduce (59) into (40) and find the 
following expression for the acceleration: 

4/3A2 

<<*>' = <R{ {B2+C2)Y,r f r*f r 

+ 2 ( ^ 2 + C 2 ) E r ^ G V l + f , - l ) 

+ 2 C 2 L r f r * E « f « } . (60) 

We shall now prove two theorems which greatly 
simplify the above expression. 

Theorem 1. X)r fr*GVfi+?*-i) = 0 for an exciton wave 
packet which originates at the center of the molecule, 
i.e., at (N+l)/2. 

Proof. I t follows from Eqs. (8) and (12) that 

M(d{r/dt)=a'tr+t3tfr+i+tr-i), (61) 

where a'= ei+a. Hence, 
a' fli d£r 

L r fr*GVfl+fr-l) = - ~ l ~ £ r fr*—. (62) 
0 0 St 

We now use Eqs. (11) and (13) to evaluate d^r/dt. 

d£r iaf 2if$ kir 
f r Ek g*r (*W° COS ^Hh)Ek't (53) 

dt ft ft N+l 



2270 A R T H U R B I E R M A N 

where the subscript zero in go(k) indicates (N+l)/2} 

i.e., the molecular center. Equation (62) now becomes 

N+l 

X g / ^ g o ^ V - ^ ^ ' - ^ , (64) 

which, by virtue of Y,r gr*ik)grU) = §kj, reduces to 

E r {r*tfr+l+tr-l) = 2Zk\gO(k) | 2 COS——. (65) 

N+l 

This sum can easily be shown to be zero by replacing 
\gow\2 by its value [2/(yV+l)][sin(ybr/2)]^ thus 
eliminating all even values of k, and then comparing 
cos[kw/(N+l)'] with its symmetric term cos\jr—kw/ 

Theorem 2. Assuming fiXO — O — fivWj the double 
sum E*y ffc*00fy(^) is time-independent. 

Proof, Consider 

d 
^ - E * . y r * * ( 0 r y ( 0 . (66) 

dt 

Again we use Eqs. (8) and (12), and find 

G = - Z*yD"**(f i4-i+ry-i)-ry(i-JH-i*+f *-i*)]. (67) 

Now 

N 2V=1 

E*G"*4-l+fA>-l) = E f&+ E'ffc 
k=2 k=2 

(68) 
I V - 1 

k=2 

where we use the assumption of the theorem. The 
consequence G = 0 follows immediately. 

Since G=0, we can evaluate Efc,yffc*Wfy(0 at /==0. 
But at t=0, £m(t) = dmo. Hence, 

L*yf**(0ry(0 = l- (69) 

I t follows from these two theorems that 

E*f** E fy=0, (70) 
y^A.fcii 

since EA; £k*tk= 1. We then conclude in (60) that 

(a) ,= (4^X2A)(R(^2+C2), (71) 

i.e., the exciton acquires a constant acceleration due to 
the X2 part of the electric field. Since B2+C2 is a term 
linear in the various atomic dipole moments ZGCt, and 
X2 is the (constant) gradient of the electric field, we 
conclude that the exciton wave packet behaves like a 
classical electric dipole, with a moment which is a 
linear combination of the various atomic moments. 

CONCLUSIONS 

In principle then an electric field can be viewed as a 
device for guiding an exciton wave packet in a molecule 
or crystal. On the other hand, since the acceleration 
depends on the field gradient which should be significant 
over atomic dimensions, the actual utility of an external 
field appears dubious. But there still exists the possi
bility of accomplishing the desired effect by means of 
intense local fields produced by microscopic charge 
distributions. 

There are a number of obvious questions to which 
answers should be sought: (1) What is the order of 
magnitude of the electric dipole moment associated 
with an exciton? (2) How does the electric field affect 
the width of the wave packet? (3) What is the influence 
of phonon coupling on the acceleration of excitons? 
(4) Is there a corresponding effect, due to an external 
magnetic field? 


